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Overview

Multi-arm trials and their advantages.

Multi-arm multi-stage trials (MAMS):
1 Group-sequential MAMS;
2 Drop-the-loser designs;
3 Adaptive randomization.



Randomised controlled trials

The traditional way to assess the effectiveness of a new experimental
treatment is to use a randomised controlled trial.

Patients are randomised between the experimental treatment and a control
treatment.

A statistical test is done after all patients are assessed for response to
treatment to test the null hypothesis that the experimental treatment is
equal to or worse than the control treatment.

This has been considered the gold-standard approach for many years, and has
worked well.



Multi-arm trials

Multi-arm trials are of great current interest as they considerably reduce
sample size requirements when testing multiple new treatments.



Issues in multi-arm trials

Although more efficient than separate trials, there are some additional issues
in multi-arm trials.



Issues in multi-arm trials: 1) which arms to compare?

It is not obvious which comparisons should be carried out following a
multi-arm trial. Possibilities:

1 Compare each experimental arm vs control separately.
2 Compare all possible pairs of arms.
3 Omnibus test - compare whether all treatments have the same mean.

2) has been suggested previously, but it is unlikely that there will be sufficient
power to detect differences between experimental treatments.

3) may have higher power than 1) when there are several experimental
treatments better than the control; however, may miss an effective treatment
if 1-2 experimental treatments are better than control.

Since most new treatments are not better than control, 1) tends to be
suggested most.



Issues in multi-arm trials: 2) control of type-I error rate

In a typical multi-arm trial, there are multiple null hypotheses being tested.

Take the example of comparing several experimental treatments against a
common control. There are two schools of thought on whether this should be
accounted for.

A multi-arm trial can be thought of as separate trials within the same protocol
- no correction for multiple testing made for separate trials, so no need for it
here.

The maximum probability of making a type-I error (the family-wise error rate,
FWER) needs to be controlled at a specified level.



Issues in multi-arm trials: 2) control of type-I error rate

Depending on the context of the trial I tend to think that a multiple testing
correction should be used. Otherwise I think the FWER should at least be
stated.

For a multi-arm trial, the maximum family-wise error rate occurs when all
experimental treatments have the same effect as the control treatment.

Thus, it is straightforward to specify the maximum FWER.



Issues in multi-arm trials: 2) control of type-I error rate

The effect of multiple testing correction on the power is fairly large, but still
multi-arm trials provide increased efficiency.

For example, for a controlled phase II trial with a total of 50 patients per arm:

Number ex-
perimental
treatments

Sample size
(separate)

Sample size
(multi-arm, no
adjustment)

Sample size
(multi-arm, full
adjustment)

2 200 150 180
3 300 200 256
4 400 250 335
5 500 300 420



Issues in multi-arm trials: 3) powering the trial

In an RCT, the power is done by specifying a clinically relevant difference
(CRD) such that the trial has a high chance to reject the null hypothesis
when the true difference is equal to the CRD.

Less obvious how to power a multi-arm trial.

It could be powered to detect the best treatment, or just to detect any that
have a certain treatment effect.

One possibility is to use the ‘least favourable configuration (LFC)’. This
assumes that one treatment is effective, with CRD treatment effect; the other
treatments are assumed to have a treatment effect below a pre-specified
‘uninteresting treatment effect’. The power is then the probability of
recommending the effective treatment.



Multi-arm multi-stage trials

Can also add interim analyses to a multi-arm trial (=multi-arm multi-stage).

Allows information gathered on treatment effectiveness during the trial to
change the design.

For example, if a certain experimental treatment is performing poorly, could
drop it from the trial, or reduce future allocation of patients to that
treatment.

Could also can allow early stopping for efficacy if an effective treatment is
found.

Interim analyses add additional efficiency and also make the trial more ethical.



Multi-arm multi-stage trials

There are several methods for using interim analyses to improve the efficiency
of a multi-arm trial.

I will cover three distinct methods:
1 Group-sequential designs;
2 Drop-the-loser designs;
3 Adaptive randomisation.

Firstly, group-sequential multi-arm trials.



Group-sequential MAMS trials

Dunnett (1955) developed method for testing multiple experimental
treatments against a control with exact correction for multiple testing.

Methodology extended to multi-arm trials with interim analyses (Magirr, Jaki
and Whitehead, 2012).

Binding futility and efficacy stopping boundaries are specified.

At each interim analysis, test statistics testing each experimental treatment
against control are calculated.

If below the futility boundary, that treatment is dropped for futility.

If above the efficacy boundary, the trial stops with the conclusion that the
treatment is effective.
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Choosing stopping boundaries

The choice of boundaries is an important problem. Together with the sample
size recruited per arm, per stage, they affect the operating characteristics of
the design.

Given a target FWER and power, there are infinitely many boundary shapes.

Need a further way of distinguishing designs.

Often in group-sequential trials, the expected sample size (ESS) is of interest.



Expected sample size

The ESS is the average sample size used if the trial were repeated many
times.

Denote δ(k) as the difference in treatment effect between arm k and the
control arm, δ = (δ(1), δ(2), . . . , δ(K).

Then ESS depends on δ.
1 For very low values of δ, the trial is very likely to stop early for futility;
2 For high values of δ, the trial is very likely to stop early for efficacy.



Optimal designs

This leads to the idea of an optimal design.

An optimal design meets the FWER and power constraints, and minimises
the ESS at some value of δ.

Infinite number of optimality criteria, so we restrict ourselves to three:

Global-null-optimal design: optimal for δ(1) = δ(2) = . . . = δ(k) = 0.

LFC-optimal design: optimal under the least favourable configuration.

δ-minimax design - aims to minimise the maximum expected sample size.

Much more detail given in Wason and Jaki (2012, Statistics in Medicine).
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Expected sample size (2)

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

δ(1)=δ(2)=...=δ(K)

E
xp

ec
te

d 
sa

m
pl

e 
si

ze

Null−optimal
LFC−optimal
δ−minimax
Triangular

All δ(k)’s varying, and equal.



Example: MRC STAMPEDE trial

The MRC STAMPEDE trial is a MAMS trial currently running in men with
hormone-sensitive advanced prostate cancer.

Five stages and six arms.

Following figures taken from Sydes et al.



Example: MRC STAMPEDE trial



Optimal allocation ratio

For multiple experimental treatments, allocating more patients to the control
arm increases the power. For a one-stage trial, it can be shown that the
optimal allocation ratio is

√
K .

No work done for MAMS - STAMPEDE trial (five stages, five experimental
arms) used allocation ratio of 2 - is this best?

Optimal allocation
Design K=2 K=4 K=6

HG -optimal 1.09 1.39 1.72
LFC-optimal 1.12 1.28 1.47
δ-minimax 1.15 1.23 1.45

However, reduction in expected sample size relatively low (≈ 10 for four
experimental arms).



Drop-the-loser designs

Expected sample size = 292.5, but 95% quantile is 432.

This creates problems - how much funding should such a trial apply for? It
cannot be the expected sample size as often that won’t be enough.

Applying for the maximum will mean the funder is committing a lot of money
(although may get some back).

Other issues with logistics, e.g. length of trial staff contracts.

Although one may lose some efficiency on average, a MAMS design that has
a fixed sample size might well be of interest.



Drop-the-loser designs

Instead of setting futility and efficacy thresholds on test statistics, one can
set the number of treatments to progress at each interim analysis.

The treatments that progress are the ones with the highest test statistics at
the interim.

The main advantage of this approach is that the sample size is fully known in
advance (no variability).

For example, a 4:2:1 design:
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Comparison of sample size requirements

From some submitted work, a comparison of the sample size requirements of
a drop-the-loser design to that of a group-sequential MAMS design:
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Advantages and disadvantages

The main advantage of a drop-the-loser design is that it has a fixed sample
size which is generally close to the median of the group-sequential design.

This fixed sample size should make it easier to plan studies.

Disadvantages include the inflexibility of the decision rules. For example, if
one treatment is very close in effect to another, then it might be that only
one can go through. Likewise, if all experimental treatments are performing
poorly, this design does not have scope for stopping early.

Deviating from the design may cause incorrect type-I error and power.

A hybrid design may be more suitable (Stallard and Friede).



Adaptive randomisation

Outcome-adaptive randomisation in essence is the idea that the allocation of
patients should be increased to successful treatments and decreased to
unsuccessful treatments.

There is a lot of literature on its use in two-arm trials.

Consensus is that it can lead to better average patient outcomes, but lower
statistical power.

When there are multiple experimental arms, the allocation to the control
group set separately, and AR applied just to the experimental arms.

This maintains the statistical power.
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Comparison of AR and MAMS

A well calibrated AR procedure results in fairly similar statistical properties to
a group-sequential MAMS procedure.

Generally AR is more efficient when there are effective experimental
treatments, and less efficient when none are effective.

AR will probably have more problems when patient characteristics or
treatment effects change as the trial progresses.

However, AR is much more flexible when it comes to dealing with delay,
missing data, intermediate outcomes, or patient subgroups.



Comparison of designs
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Blue boxplots - sample size used when all experimental treatments are ineffective.
Pink boxplots - sample size used when one experimental treatment is effective.
Dashed line - sample size required by AR.



Conclusion

Multi-arm trials provide a big gain in efficiency over separate trials

Several designs with interim analyses to choose from (group-sequential,
drop-the-loser, and adaptive randomisation). Generally statistical
performance is fairly similar, but each has its advantages and disadvantages.

All designs become less efficient when there is a long delay between recruiting
patients and assessing their treatment response. An intermediate endpoint
may be useful for aiding early decision making.
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Formal description of Adaptive randomisation

More formally, specify prior distributions for effectiveness of each treatment.

Let there be J stages, with a total of N patients recruited, equally distributed
between the stages.

After each stage, calculate posterior probabilities P(δk > 0|data) for each
arm.

Allocation to arm k, πk , in the next stage is set proportional to these
probabilities.

πk ∝



P
(
δk > 0|Yjk ,Yj0, njk , nj0

)γ(j/J)

K∑
i=1

P
(
δi > 0|Yji ,Yj0, nji , nj0

)γ(j/J)
if k=1, . . . , K;

1
K exp

(
max(n′

1, n
′
2, . . . , n

′
K )− n′

0

)η(n′/N)

if k=0,

(1)

where γ and η are increasing functions.



Formal description of Adaptive randomisation

At the end of the trial, test statistics for the effect of each arm against
control, (Z1, . . . ,ZK ) are calculated.

If Zk is above a critical value c , then reject H
(k)
0 .

N and c are chosen to control the FWER/type-I error rate and power of the
design.

The choice of γ() affects the efficiency of the design substantially.

We have explored a large number of possibilities and found the most efficient
choice (results in submitted paper, available upon request).


