

From flow of rock

To flows of people...

From the galactic scale down to the atomic we are surrounded by discrete objects

Wherever we look on the earth's surface there are discrete things – from rock to trees to animals and people

Discrete systems are generally

- •Composed of many *interacting* individuals
- Heterogeneous
- Spatially distributed
- Dynamics are generally complex (not just complicated!)
 - Sensitive to initial/boundary conditions
 - Path-dependent/contingent/adaptive
 - Non-decomposable
 - Tipping points/Phase changes

On the Earth

- •Multiple interacting system types at different space and time scales
 - •Everything is connected to everything else!

Statistics are typically

- Non gaussian often with fat-tails
- Non-stationary over time and/or space

Environmental Change Depends on Discrete systems

- Causes and impacts of climate change
- •Ecosystems, their services, management and conservation
- Environmental Hazards
- Disease and pandemics
- Urbanization
- Land-use change
- Economics, poverty, wealth distributions...

Explicitly spatial Process-based understanding is needed

- We usually lack equations of motion or conservation laws
 - Approach by simulation of every discrete object in the system
 - •Hope that large scale systematic behaviours emerge!

Discrete Element Models

Atomic Scale simulation

Avalanches and debris flows Cliff-scree systems

Individual-Based Models

Forest simulation

Herds and flocking

Foraging

Predator-prey models

Agent-Based Models

Epidemics

Traffic simulation

Crowds and escape from disaster

Urban populations

Social-Ecological Systems

Land-use Change

Increasing Complexity

Discrete Element Models

Atomic Scale simulation

Avalanches and debris flows Cliff-scree systems

Individual-Based Models

Forest simulation

Herds and flocking

Foraging

Predator-prey models

Agent-Based Models

Epidemics

Traffic simulation

Crowds and escape from disaster

Urban populations

Social-Ecological Systems

Land-use Change

Increasing Numbers

Discrete Element Models

Rock can flow like water

We can model this using Newton's laws, representing every rock in the flowing material

Computationally intensive! We have to use timesteps of order a microsecond

Discrete Element Models

Idealise rocks as spherical particles

Particles in contact are imaging to be connected by linear springs

Discrete Element Models

Idealise rocks as spherical particles

Particles in contact are imaging to be connected by linear springs

Restoring force is damped according to relative velocity

Discrete Element Models

Idealise rocks as spherical particles

Particles in contact are imaging to be connected by linear springs

Restoring force is damped according to relative velocity

Relative rotation gives rise to further damped elastic forces

Discrete Element Models

Example – identical particles falling into a 2D box

Discrete Element Models

Example – identical particles falling into a 2D box

Note
"crystalline"appearance
– a result of particles
all being exactly the
same size

Discrete Element Models

The "Brazil-nut" effect

The large particle

rises to the surface

Shake an irregular set of particles in a box

Discrete Element Models

A more Geological example -

Cliff -scree systems

Rev. Osmond Fisher

Writer of the first geophysics textbook

Fisher, 1866

Discrete Element Models

Cliff –scree systems

What happens as particles erode from the cliff face and fall to make a scree?

10,000 particles start off in a 2-D block

Particle sizes are distributed between 0.3 and 0.6 m diameter

Exposed particles on the front cliff face can fall with some probability per unit time onto the fixed surface below

Discrete Element Models

Cliff –scree systems

What happens as particles erode from the cliff face and fall to make a scree?

The scree builds but undergoes a series of progressively larger avalanches

Behind it the rock surface evolves into a quadratic shape

Cliff-scree systems – time series of avalanches

Late events have a long tail of very large slope failures. Largest events can occur very near the "end" of the evolution

Cliff-scree systems – distribution of avalanches

Early evolution – left-skewed, short tail, characteristic size Later evolution – long tail, power law – self-organized criticality

Early period statistics – a short tail and a modal value

Late period distributions - long tail, no typical size, distribution is close to a power law

Cliff-scree systems – distribution of avalanches

Early evolution – left-skewed, short tail, characteristic size Later evolution – long tail, power law – self-organized criticality Results largely independent of model parameters

Early period statistics – a short tail and a modal value

Late period distributions - long tail, no typical size, distribution is close to a power law

Discrete Element Models

Atomic Scale simulation

Avalanches and debris flows Cliff-scree systems

Individual-Based Models

Forest simulation

Herds and flocking

Foraging

Predator-prey models

Agent-Based Models

Epidemics

Traffic simulation

Crowds and escape from disaster

Urban populations

Social-Ecological Systems

Land-use Change

Increasing Complexity

• TROLL(Chave 1999)

Forest Model Individual-based model representing each tree Allometric rules for tree growth Competition primarily through shading Different functional types with varying shade tolerance and growth parameters Examples •SORTIE (Pacala et al 1996)

Forest Model

Forest Model

Huge number of seedlings – but they don't make it to maturity

Forest Model - a specific example

- Bore Khola Valley
- Nepal Middle Hills
- •27.5°50'N 85°20'E
- •20km N of Kathmandu

Forest Model - a specific example

- Bore Khola Valley
- Nepal Middle Hills
- •27.5°50'N 85°20'E
- •20km N of Kathmandu

Forest Model - a specific example

•4km square catchment

Forest Model - a specific example

 Tree density accumulates over time

Forest Model - a specific example

 Tree density accumulates over time Now we send people out into the forest

Increasing

Complexity

Discrete Element Models

Atomic Scale simulation

Avalanches and debris flows Cliff-scree systems

Individual-Based Models

Forest simulation

Herds and flocking

Foraging

Predator-prey models

Agent-Based Models

Epidemics

Traffic simulation

Crowds and escape from disaster

Urban populations

Social-Ecological Systems

Land-use Change

Increasing Numbers

Foraging

We imagine a gatherer of forest products searches randomly in part of the domain, degrading the forest over time

Random search is very inefficient!

Foraging

Large fluctuations are experienced in the total travel distance

Foraging

Returning home increases the difficulty for random search

Individual excursion length limited to 25km

Foraging

A simple strategy of remembering the last visited increases the overall area of the domain visited

Foraging

but memory gives a huge benefit in gathering efficiency

random

Increasing Complexity

Discrete Element Models

Atomic Scale simulation

Avalanches and debris flows Cliff-scree systems

Individual-Based Models

Forest simulation

Herds and flocking

Foraging

Predator-prey models

Agent-Based Models

Epidemics

Traffic simulation

Crowds and escape from disaster

Urban populations

Social-Ecological Systems

Land-use Change

Increasing Numbers

Forest Model - a specific example

 Tree density accumulates over time

- •Now we send people out into the forest
- Then people clear the forest for farming

Forest Model - a specific example

 Tree density accumulates over time

- •Now we send people out into the forest
- Then people clear the forest for farming

Forest with people

- •Fields Highlighted in green, degraded forest in yellow
- •Farmers Exploit the lower part of the catchment first
- Trees are removed much faster then they can recover

Forest with people

- Forested areas are good at attenuating water
- •Soil compaction in farmed areas increases soil saturation
- As farming increases, flash floods become more likely

Bithell and Brasington 2008

Increasing

Complexity

Discrete Element Models

Atomic Scale simulation

Avalanches and debris flows Cliff-scree systems

Individual-Based Models

Forest simulation

Herds and flocking

Foraging

Predator-prey models

Agent-Based Models

Epidemics

Traffic simulation

Crowds and escape from disaster

Urban populations

Social-Ecological Systems

Land-use Change

Increasing Numbers

Canvey Island

In the great 1953 flood, sea defences failed.

58 people died, 11000 evacuated.

Now 38000 people behind 4.66m high wall.

Only a single exit road

The illusion of safety provided by the sea wall may have encouraged settlement.

Map data: Crown Copyright/ Database right 2013 – An Ordnance Survey/EDINA supplied service. Flood modelling by James Brown Brown, J.D, Spencer, T. And Moeller, (2007) Water Resources Research 43.

As the climate changes, extreme events are predicted to become more likely.
Storm surges may again over- top or breach the flood barrier

Canvey Island

In the great 1953 flood, sea defences failed

58 people died, 11000 evacuated

Simulated breach

Map data: Crown Copyright/ Database right 2013 – An Ordnance Survey/EDINA supplied service. Flood modelling by James Brown Brown, J.D, Spencer, T. And Moeller, (2007) Water Resources Research 43.

The island can flood in a few hours

Evacuation may be necessary

Traffic simulations can help to understand the evacuation process

Policy options can be tested to see what might improve evacuation times.

Conclusions

We can directly model processes in systems of discrete objects

- ❖Deal with situations where we lack analytic power
- Emergent properties arise from collective interactions
- ❖Multiple coupled systems can be dealt with
- Test policy options where not possible to experiment
- ❖ Very visual good for policy communication

Future

- ❖Larger scale, more complete, more complex systems
- ❖Social processes and networks in real-world situations
 - ❖Model the "Anthropocene"
 - ❖current "Earth System Models" do not include people

➤ Grand Unified Models!

Challenges

Model ownership

Democratization of knowledge

Policy assessment

Risk and environmental change

Model coupling

Cross-disciplinarity

Sharing and reproducing models/results

Joining complex dynamical models

Problem framing

What should be modelled?

Who for?

Vizualization

System size

Spatial extent

Complex interacting dynamical systems

Scaling

System size

Parameter space exploration

Processes at different scales

Micro-macro links

Validation

Reflexivity

Causality

Data integrity

Handling uncertainty

Complexity

What can be simulated?

How much complexity is "enough"?

How intelligent do agents need to be?

