Cambridge Statistics Discussion Group (CSDG)

Quantifying personal exposure to air pollution with sensor technologies and digital science

Dr Lia Chatzidiakou <u>ec571@cam.ac.uk</u> <u>the Rod Jones' group</u>

Yusuf Hamied Department of Chemistry University of Cambridge

22nd November 2023

Air pollution and human health: a national problem but a global crisis

Estimated 8M premature deaths annually globally

Low-income countries are worst affected (92% of pollution-related deaths)

Common air pollutants (reminder)

NO and NO₂ levels in Cambridge on one afternoon

PM collected on filters and examined with a microscope. PM can be made up of different chemicals.

NOx (NO + NO₂)

- Primarily emitted by cars and trucks
- Associated with asthma attacks, respiratory illness and cardiovascular effects

Particulate Matter (PM)

- Emitted directly or formed in the atmosphere
- Particles less than 2.5 micrometers in diameter, (fine particles or PM_{2.5}), pose the greatest risk to health.

Particulate Matter (PM)

Particle size is important:

- Affects transport
- Time suspended in the air
- Related to chemical composition
- Deposition in the lungs

Measurement techniques for air quality

Reference-grade instrumentation

- Expensive to set up and maintain
- Require roadside infrastructure
 to house them
- Well-quantified accuracy
 UNIVERSITY OF
 CAMBRIDGE

Measurement techniques for air quality

Reference-grade instrumentation

- Expensive to set up and maintain
- Require roadside infrastructure
 to house them
- Well-quantified accuracy
 UNIVERSITY OF
 CAMBRIDGE

⇒ Less resources where most needed

Air pollution and human health: what do we know?

Modelled annual averages

Air pollution and human health: what do we know?

Modelled annual averages

AMBRIDGE

UNIVERSI

Single and dual pollutant models for NO₂ and PM_{2.5} all only explain the *same fraction* of health outcomes..... (UK COMEAP)

Some studies suggest surface O_3 can have a *protective* effect? ... O_3 often <u>anti-correlated</u> with other pollutants

Cannot reliably distinguish causal links

Critical knowledge gaps: personal and indoor exposure

Map of personal exposure to NOx during commuting (London)

- Activity patterns
- Time budget

 Indoor air quality (indoor sources, vs outdoor air) very different from ambient pollution

 \Rightarrow Linking activity to exposure and to health

State-of-the-art health models: the next step

Nov 14

Nov 21

Ambient

pollutants

Personal

1. Sensor networks

Dec 0

Nov 28

Published in[.] Chatzidiakou et al., Atmos. Meas. Tech., 2019

3. Automated time activity patterns

Published in: Chatzidiakou et al., BMC Env. Health, 2022

4. Novel health and exposure metrics

Dec 12

Dec 19

- "Everyone's disease is the product of the individual history of exposures, superimposed on their underlying genetic susceptibilities"
- Beyond hard and rare outcomes...

Sensor networks

Published in: Chatzidiakou et al., AMT, 2019

 $\Rightarrow Integration of new and historic data from multiple sources, over a variety of scales, resolutions and frequencies 11$

Sensor networks + GIS information

Published in: Chatzidiakou et al., AMT, 2019 UNIVERSITY OF CAMBRIDGE ⇒ Integration of new and historic data from multiple sources, over a variety of scales, resolutions and frequencies 12

Data assimilation methods (indoor air)

Data assimilation methods (indoor air)

Location, building characteristics, materials, operation and maintenance ⇒ Large variation between and within microenvironments

Examples of a "Victorian" and contemporary school with notable differences in indoor air pollution (London)

Data assimilation methods (indoor air)

Location, building characteristics, materials, operation and maintenance ⇒ Large variation between and within microenvironments

Examples of a "Victorian" and contemporary school with notable differences in indoor air pollution (London)

Air pollution worse inside London classrooms than outside, study finds

Outdoor measurements vs personal exposure (school)

Outdoor measurements vs personal exposure (home)

Outdoor measurements vs personal exposure (sensor network)

from the outdoor-generated component of exposure !

Are outdoor measurements good proxies of personal exposure?

Automated time-activity patterns

 \Rightarrow Automated interpretation with advanced spatial analysis, Al and innovative methods

Automated time-activity patterns

 ⇒ Commuting small fraction of time-budget
 ⇒ Maximum exposure to PM in the London Underground
 ⇒ Maximum exposure to NOx and ozone during street-level commuting

Deployment of a PAM: illustrative example

KK

22

Why physical activity important?

23

Why physical activity important?

⇒ Different sources operate in different microenvironments

- \Rightarrow Affect chemical composition
- \Rightarrow Particle toxicity is very different !!!

The *oxidative potential* of inhalable airborne particles is a measure of their ability to directly cause oxidative stress in the lung by depleting the antioxidants naturally present in the lung fluids.

- Extraction of inhalable and respirable PM samples in a surrogate lung fluid containing glutathione and ascorbic acid (natural antioxidant).
- HPLC-MS analysis of the extracts.
- Measurements of the kinetics of the depletion of the natural antioxidants.

Example of depletion kinetics from Shahpoury et al. 2019, Atmos. Meas. Tech., 12, 6529– 6539, 2019. ²⁴

Deployment of a PAM: illustrative example

The AIRLESS project

NIVERSITYOE

To establish more reliable links between air pollution exposure and health (in China)

Urban Beijing

High-rise residential blocks **Centralised heating**

Peri-urban Beijing (Pinngu)

Agriculture activities Biomass burning for domestic energy (cooking, heating)

Frequent "haze" episodes

https://doi.org/10.5194/acp-19-7519-2019 C Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)"

Personal activity vs ambient monitors...

lon

Local hour

Personal activity vs ambient monitors...

1) Over 80% of time spent <u>indoors</u>

A: ambient measurements + generic inhalation

B: personal monitoring + activity

2) Exposure not well represented (overestimated) by outdoor air quality.....

The AIRLESS project: personal dose

The home microenvironment was the most important modifier of personal dose

How does this compare to the UK?

(a) Absolute concentrations

Pollutants monitored with PAMs in 250 AIRLESS participants and 35 London participants during a week.

- 1) Outdoor affects personal exposure
- 2) CHINA: home exposure high
- 3) UK: PM in underground high

How does this compare to the UK?

(a) Absolute concentrations

Relative (health) risks of different pollutants (using <u>ambient</u> air measurements)

Lags of 1,2,3 days harmful ¹⁰ beneficial ⁻⁵ PM_{2.5} CO NO NO₂ O₃
(single pollutant)

- PM_{2.5}, CO, NO and NO₂ all show significant harmful associations (proxies?)
- O₃ shows significant beneficial outcome (?)

C-reactive protein (CRP) is released into the blood within a few hours after tissue injury, the start of an infection or other inflammation.

Mixed effect linear models

Analysis and graph by Yiqun Han 34

(using personal measurements)

Mixed effect linear models (single pollutant)

Key difference: NO₂ risk no longer statistically significant.....

Exposure 'error'.....

C-reactive protein (CRP) is released into the blood within a few hours after tissue injury, the start of an infection or other inflammation.

Analysis and graph by Yiqun Han 35

Mixed effect linear models (single pollutant)

⇒ Indoor-generated CO a proxy for indoor combustion sources?

Mixed effect linear models (single pollutant)

⇒ Indoor-generated CO a proxy for indoor combustion sources?

⇒ Outdoor-generated NO₂ a proxy for traffic intensity

Mixed effect linear models (single pollutant)

- ⇒ Indoor-generated CO a proxy for indoor combustion sources?
- ⇒ Outdoor-generated NO₂ a proxy for traffic intensity
- ⇒ Single-pollutant models cannot control for correlation (or anticorrelation) between pollutants

CAMBRIDGE

Mixed effect linear models (single pollutant)

- ⇒ Indoor-generated CO a proxy for indoor combustion sources?
- ⇒ Outdoor-generated NO₂ a proxy for traffic intensity
- ⇒ Single-pollutant models cannot control for correlation (or anticorrelation) between pollutants
- ⇒ Outdoor-generated PM more toxic than previously thought

39

Personal monitoring vs ambient measurements

- ⇒ Health risk assessment bias from exposure 'error'
- ⇒ Effects of source-related exposure on health?
- ⇒ *Improved statistical methods!*

⇒ understanding and policy implications....

Measurements and models: the next steps

 \Rightarrow Advanced scientific knowledge for efficient policy and decision-making \Rightarrow Empower individuals/communities to reduce environmental health risks \Rightarrow Societal gains

Dr Lia Chatzidiakou ec571@cam.ac.uk

+ teams!!

