Size: 7939
Comment:
|
Size: 8963
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 5: | Line 5: |
* Detect bad MEG channels from the pre-HPI period in your data (first 20 seconds) * Apply SSS including ST and movement compensation, downsampling by a factor 3 (to 3 ms), assuming head origin [0 0 45] for all data sets |
* Detect bad MEG channels from the pre-HPI period in your data (assuming HPI measurement was switched on after 20s) * Apply SSS including ST and movement compensation, downsampling by a factor 3 (to 3 ms, if sampling frequency is 1000 Hz), assuming head origin [0 0 45] for all data sets |
Line 23: | Line 23: |
badchannels{cnt, 1} = {'0741', '1533'}; badchannels{cnt, 2} = {'1533', '0713'}; badchannels{cnt, 3} = {''}; % define bad MEG (not EEG) channels here (if there are any) | |
Line 28: | Line 29: |
badchannels{cnt, 1} = {'0741', '1533'}; badchannels{cnt, 2} = {'1533', '0713'}; badchannels{cnt, 3} = {''}; % define bad MEG (not EEG) channels here (if there are any) | |
Line 33: | Line 35: |
badchannels{cnt, 1} = {'0741', '1533'}; badchannels{cnt, 2} = {'1533', '0713'}; badchannels{cnt, 3} = {''}; % define bad MEG (not EEG) channels here (if there are any) | |
Line 35: | Line 38: |
%% The rest should not need editing | |
Line 98: | Line 102: |
% (2) %%%%%%%%%%%%%%%%%%%%%%%%% |
fprintf(1, '\n Now processing %s with %d pre-specified bad channels.\n', rawfname, length( badchannels{ss, bb} ) ); %% (2) Convert data |
Line 106: | Line 112: |
fprintf(1, '\n%s\n', mfcmd2); | fprintf(1, '\n\n%s\n\n', mfcmd2); |
Line 110: | Line 116: |
%% Get bad channels | |
Line 140: | Line 146: |
% (3) %%%%%%%%%%%%%%%%%%%%%%%%% |
% If extra bad channels defined, append them here if ~isempty( badchannels{ss,bb} ), for i=1:length(badchannels{ss,bb}), badstxt = [badstxt ' ' badchannels{ss,bb}{i}]; end; end; fprintf(1, '\nThe following channels are marked as bad: %s\n\n', badstxt); %% (3) Maxfilter incl. ST and Movecomp |
Line 144: | Line 157: |
Line 146: | Line 158: |
%orgcmd=sprintf('-frame head -origin %g %g %g',fit(1),fit(2),fit(3)); orgcmd=sprintf('-frame head -origin 0 0 45'); |
orgcmd=sprintf(' -frame head -origin 0 0 45'); |
Line 152: | Line 163: |
badcmd=[' -bad ', badstxt]; | badcmd=[' -bad ', badstxt]; |
Line 160: | Line 171: |
hpicmd=sprintf(' -hpistep %d -hpisubt %s -movecomp -hp %s',hpistep,hpisubt,posfname); hpicmd |
hpicmd=sprintf(' -hpistep %d -hpisubt %s -movecomp -hp %s',hpistep,hpisubt,posfname); |
Line 166: | Line 176: |
stcmd=sprintf(' -st %d -corr %g',stwin,stcorr); | stcmd=sprintf(' -st %d -corr %g',stwin,stcorr); |
Line 170: | Line 180: |
dscmd=sprintf(' -ds %d', dsval'); | dscmd=sprintf(' -ds %d', dsval'); |
Line 179: | Line 189: |
Line 181: | Line 192: |
' -ctc /neuro/databases/ctc/ct_sparse.fif' ' ',... ' -cal /neuro/databases/sss/sss_cal.dat' ' ',... ' -autobad off ',... ' -skip 0 20 ',... ' -origin 0 0 45 ',... ' -frame head ',... ' -movecomp ',... ' -st',... ' -ds 3',... ' -format short ',... ' -hp ' posfname,... |
' -ctc /neuro/databases/ctc/ct_sparse.fif' ' ',... ' -cal /neuro/databases/sss/sss_cal.dat' ' ',... ' -autobad off ',... ' -skip 0 20 ',... stcmd,... % temporal SSS dscmd,... % downsampling badcmd,... % bad channels orgcmd,... % head frame and origin hpicmd,... % movement compensation ' -format short ',... |
Line 195: | Line 205: |
Line 196: | Line 207: |
fprintf(1, '%s\n', mfcmd3); | fprintf(1, '\n\n%s\n\n', mfcmd3); |
Maxfilter Script in Matlab
This script will do the following for you:
- Detect bad MEG channels from the pre-HPI period in your data (assuming HPI measurement was switched on after 20s)
- Apply SSS including ST and movement compensation, downsampling by a factor 3 (to 3 ms, if sampling frequency is 1000 Hz), assuming head origin [0 0 45] for all data sets
- Interpolate each data set to the first one specified in the list, for each subject separately ("trans")
At the end, you will have files ending in "sss" (before trans) and "ssst" (after trans), which you can use for the interesting part of your analysis...
% based on script by Jason Taylor pathstem = '/YourOutputPath/'; % for output data rawpathstem = '/megdata/cbu/YourSubDir'; % input data % Define data for individual subjects as follows: cnt = 1; subject{cnt} = {'meg01_0001', '012345'}; blocksin{cnt} = {'block1', 'block2', 'block3', 'block4'}; % as named during recording, in /megdata/cbu/YourSubDir/... (may differ across subjects) blocksout{cnt} = {'block1', 'block2', 'block3', 'block4'}; % should be consistent for all subjects badchannels{cnt, 1} = {'0741', '1533'}; badchannels{cnt, 2} = {'1533', '0713'}; badchannels{cnt, 3} = {''}; % define bad MEG (not EEG) channels here (if there are any) cnt=cnt+1; subject{cnt} = {'meg02_0002', '123456'}; blocksin{cnt} = {'block1', 'block2', 'block3', 'block4'}; % as named during recording, in /megdata/cbu/YourSubDir/... (may differ across subjects) blocksout{cnt} = {'block1', 'block2', 'block3', 'block4'}; % should be consistent for all subjects badchannels{cnt, 1} = {'0741', '1533'}; badchannels{cnt, 2} = {'1533', '0713'}; badchannels{cnt, 3} = {''}; % define bad MEG (not EEG) channels here (if there are any) cnt=cnt+1; subject{cnt} = {'meg03_0003', '234557'}; blocksin{cnt} = {'block1', 'block2', 'block3', 'block4'}; % as named during recording, in /megdata/cbu/YourSubDir/... (may differ across subjects) blocksout{cnt} = {'block1', 'block2', 'block3', 'block4'}; % should be consistent for all subjects badchannels{cnt, 1} = {'0741', '1533'}; badchannels{cnt, 2} = {'1533', '0713'}; badchannels{cnt, 3} = {''}; % define bad MEG (not EEG) channels here (if there are any) cnt=cnt+1; %% The rest should not need editing nr_sbj = length(subject); try do_subjects, % if do_subjects not defined, do all subjects catch do_subjects = [1:nr_sbj]; end; % Check file names and paths checkflag = 0; for ss = do_subjects, nr_bls = length( blocksin{ss} ); if length(blocksin{ss}) ~= length(blocksout{ss}), checkflag = 1; fprintf(1, 'Different number of input and output names for subject %d (%s, %s)\n', ss, subject{ss}{1}, subject{ss}{2}); end; for bb = 1:nr_bls, rawpath = fullfile( rawpathstem, subject{ss}{1}, subject{ss}{2} ); rawfname = fullfile( rawpath, [blocksin{ss}{bb} '_raw.fif'] ); outpath = fullfile( pathstem, subject{ss}{1}, subject{ss}{2} ); if ~exist( outpath, 'dir' ), success = mkdir( outpath ); if ~success, checkflag = 1; fprintf(1, 'Could not create directory %s\n', outpath); end; end; if ~exist( rawfname, 'file' ), checkflag = 1; fprintf(1, '%s does not exist\n', rawfname); end; end; end; if checkflag, fprintf(1, 'You''ve got some explaining to do.\n'); return; end; for ss = do_subjects, nr_bls = length( blocksin{ss} ); for bb = 1:nr_bls, rawpath = fullfile( rawpathstem, subject{ss}{1}, subject{ss}{2} ); rawfname = fullfile( rawpath, [blocksin{ss}{bb} '_raw.fif'] ); outpath = fullfile( pathstem, subject{ss}{1}, subject{ss}{2} ); outfname1 = fullfile( outpath, [blocksout{ss}{bb} '_raw_tmp.fif'] ); % files after bad channel check logfname1 = fullfile( outpath, [blocksout{ss}{bb} '_raw_tmp.log'] ); outfname2 = fullfile( outpath, [blocksout{ss}{bb} '_raw_sss.fif'] ); % files after SSS+ST logfname2 = fullfile( outpath, [blocksout{ss}{bb} '_raw_sss.log'] ); outfname3 = fullfile( outpath, [blocksout{ss}{bb} '_raw_ssst.fif'] ); % files after interpolation to first specified session logfname3 = fullfile( outpath, [blocksout{ss}{bb} '_raw_ssst.log'] ); posfname = fullfile( outpath, [blocksout{ss}{bb} '_raw_hpi.pos'] ); % HPI info badfname = fullfile( outpath, [blocksout{ss}{bb} '_raw_bad.txt'] ); % bad channel info markbadfname = fullfile( outpath, [blocksout{ss}{bb} '_raw_markbad.fif'] ); fprintf(1, '\n Now processing %s with %d pre-specified bad channels.\n', rawfname, length( badchannels{ss, bb} ) ); %% (2) Convert data skipint = '0 20'; mfcmd2=[ '/neuro/bin/util/maxfilter -f ' [rawfname] ' -o ' [outfname1],... ' -autobad 20 -skip ' [skipint] ' -v | tee ' [logfname1] ]; fprintf(1, '\n\n%s\n\n', mfcmd2); eval([' ! ' mfcmd2]) delete( outfname1 ); %% Get bad channels % Get bad channels from log file, store in file: badcmd=[ 'cat ' [logfname1] ' | sed -n ''/Static/p'' | cut -f 5- -d '' '' > ' [badfname] ]; fprintf(1, 'Looking for bad channels\n'); fprintf(1, '\n%s\n', badcmd); eval([' ! ' badcmd]); % Read bad channels in to matlab variable: fprintf(1, '\nReading bad channel information\n'); x=dlmread([badfname],' '); x=reshape(x,1,prod(size(x))); x=x(x>0); % Omit zeros (padded by dlmread): % Get frequencies (number of buffers in which chan was bad): [frq,allbad] = hist(x,unique(x)); % Mark bad based on threshold (currently 5 buffers): bads=allbad(frq>5); badstxt = sprintf('%s%s%s',num2str(bads)) if sum(badstxt)>0 dlmwrite([markbadfname],badstxt,'delimiter',' '); else eval(['! touch ' [markbadfname] ]) end % If extra bad channels defined, append them here if ~isempty( badchannels{ss,bb} ), for i=1:length(badchannels{ss,bb}), badstxt = [badstxt ' ' badchannels{ss,bb}{i}]; end; end; fprintf(1, '\nThe following channels are marked as bad: %s\n\n', badstxt); %% (3) Maxfilter incl. ST and Movecomp % -- MAXFILTER ARGUMENTS --: % ORIGIN and FRAME: orgcmd=sprintf(' -frame head -origin 0 0 45'); % BAD CHANNELS: if length(badstxt)>0 badcmd=[' -bad ', badstxt]; else badcmd=''; end % HPI ESTIMATION/MOVEMENT COMPENSATION: hpistep=200;hpisubt='amp'; hpicmd=sprintf(' -hpistep %d -hpisubt %s -movecomp -hp %s',hpistep,hpisubt,posfname); % SSS with ST: stwin=4; stcorr=0.980; stcmd=sprintf(' -st %d -corr %g',stwin,stcorr); % Downsampling dsval = 3; dscmd=sprintf(' -ds %d', dsval'); % -- MAXFILTER COMMAND -- if exist(outfname2), fprintf(1, 'Deleting %s\n', outfname2); delete( outfname2 ); end; mfcmd3=[ ' /neuro/bin/util/maxfilter -f ' [rawfname] ' -o ' [outfname2],... ' -ctc /neuro/databases/ctc/ct_sparse.fif' ' ',... ' -cal /neuro/databases/sss/sss_cal.dat' ' ',... ' -autobad off ',... ' -skip 0 20 ',... stcmd,... % temporal SSS dscmd,... % downsampling badcmd,... % bad channels orgcmd,... % head frame and origin hpicmd,... % movement compensation ' -format short ',... ' -v | tee ' [logfname2] ]; fprintf(1, '\nMaxfiltering... (SSS+ST)\n'); fprintf(1, '\n\n%s\n\n', mfcmd3); eval([' ! ' mfcmd3 ]); % (4) %%%%%%%%%%%%%%%%%%%%%%%%% % TRANSFORMATION (all but first file, block 1): if bb>1 trcmd=sprintf(' -trans %s -frame head -origin 0 0 45',b1file); mfcmd4=[ '/neuro/bin/util/maxfilter -f ' [outfname2] ' -o ' [outfname3],... ' -autobad off ', trcmd, ' -force -v | tee ' logfname3 ]; fprintf(1, '\nMaxfiltering... -trans\n'); fprintf(1, '%s\n', mfcmd4); eval([' ! ' mfcmd4 ]) else, b1file = outfname2; % file used for future "trans" copyfile( outfname2, outfname3 ); end; % if bb>1 end; % blocks end; % subjects