FAQ/CounterBalancing - CBU statistics Wiki

Please enter your password of your account at the remote wiki below.
/!\ You should trust both wikis because the password could be read by the particular administrators.

Clear message
location: FAQ / CounterBalancing

Counterbalancing for immediate sequential effects

ALGORITHM (Williams)

  1. Write down the N conditions in some order, say {1, 2, 3, ...} and its N-1 cyclic rotations
  2. Apply the interleaving permutation {1, 2, N, 3, N-1,4, N-2, ...} to each of these sequences
  3. If N is even, STOP, otherwise append the N sequences obtained by completely reversing the N sequences generated by steps 1 and 2.

illustrated for N=6 (even)

The interleaving permutation maps {1,2,3,4,5,6} to {1,2,6,3,5,4}.

Applying this to the columns of the cyclic matrix :

  • 123456
    234561
    345612
    456123
    561234
    612345

we get the sequentially counterbalanced 6x6 design:

  • 126354
    231465
    342516
    453621
    564132
    615243.

Illustrated for N=7 (odd)

The interleaving permutation maps {1,2,3,4,5,6,7} to {1,2,7,3,6,4,5}.

Applying this to the columns of the cyclic matrix :

  • 1234567
    2345671
    3456712
    4567123
    5671234
    6712345
    7123456

we get the intermediate matrix:

  • 1273645
    2314756
    3425167
    4536271
    5647312
    6751423
    7162534.

Appending the mirror image of the intermediate matrix we get the sequentially counterbalanced 14x7 design:

  • 1273645
    2314756
    3425167
    4536271
    5647312
    6751423
    7162534
    5463721
    6574132
    7615243
    1726354
    2137465
    3241576
    4352617.

Here is some MATLAB code to perform this:

  • function design = williams(n)
    % Ian Nimmo-Smith (MRC CBU) April 2003
    cyclic = toeplitz([1,(n:(-1):2)],[1:n]);
    cyclic = cyclic([1,(n:(-1):2)],:);
    baseperm = [1];
    half = floor(n/2);
    if n == 2*half    % even
        for j = 1:(half-1)
            baseperm = [baseperm, j+1, n-j+1];
        end
        baseperm = [baseperm, half+1];
    else              % odd
        for j = 1:half
            baseperm = [baseperm, j+1, n-j+1];
        end
    end
    design = cyclic(:,baseperm);
    if n ~= 2*half
        design = [design;design(:,(n:(-1):1))];
    end      

BIBLIOGRAPHY

Archdeacon, D.S., Dinitz, J.H., and Stinson, D.R. (1980). Some new row­complete Latin Squares. Journal of Combinatorial Theory, Ser. A, 29, 395-- 398.

Mausumi Bose (Applied Statistics Unit, Indian Statistical Institute Kolkata, India) Crossover Designs: Analysis and Optimality Using the Calculus for Factorial Arrangements, Design Workshop Lecture Notes ISI, Kolkata, 25-29 November 2002, 83-192.

Bradley, J. V. (1958). Complete counterbalancing of immediate sequential effects in a Latin square design, Journal of the American Statistical Association, 53, 525-528.

Durso, F. T. (1984). A Subroutine for counterbalanced assignment of stimuli to conditions. Behaviour Research Methods, Instruments & Computers, 16(5), 471-472

Federer, Walter T. and Nguyen, Nam-Ky. Incomplete block designs. Volume 2, pp 1039–1042 in Encyclopedia of Environmetrics (ISBN 0471 899976) Edited by Abdel H. El-Shaarawi and Walter W. Piegorsch . John Wiley & Sons, Ltd, Chichester, 2002.

Lewis, J. R. (1993). Pairs of Latin squares that produce digram-balanced Greco-Latin designs: A BASIC program. Behaviour Research Methods, Instrument, & Computers, 25(3), 414-415

Ollis, Matt: Terraces and the Oberwolfach Problem

Prescott, P. (1999). Construction of sequentially counterbalanced designs formed from two Latin squares. Utilitas Mathematica, 55, 135-52.

Prescott, P. (1999). Construction of uniform-balanced cross-over designs for any odd number of treatments. Statistics in Medicine, 18, 265-72.

Williams, E. J. (1949). Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Scientific Research, 2, 149-168.

[Last updated on 27 November, 2003]


Return to Statistics FAQ page

Return to Statistics main page

Return to CBU main page

These pages are maintained by Ian Nimmo-Smith and Peter Watson