MATLAB code for computing Mardia's multivariate kurtosis coefficient in Multivariate Normality testing Normality testing
David Graham (2006) has written MATLAB code based upon the work of A. Trujillo-Oriz and R. Hernandez-Walls (2003) from the Universidad Autonoma de Baja California who compute Mardia's multivariate kurtosis coefficient which, including an example, is located here.
Reference
Trujillo-Ortiz, A. and R. Hernandez-Walls. (2003). Mskekur: Mardia's multivariate skewness and kurtosis coefficients and its hypotheses testing. A MATLAB file. [WWW document]. URL http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?
This code is also reproduced below:
function [H stats] = mardiatest(X,alpha) % MARDIATEST Mardia multivariate normality test using skewness & kurtosis. % H = MARDIATEST(X,ALPHA) performs Mardia's test of multivariate % normality to determine if the null hypothesis of multivariate % normality is a reasonable assumption regarding the population % distributions of a random samples contained within the columns of X. X % must be a N-values by M-samples array. The desired significance level, % ALPHA, is an optional scalar input (default = 0.05). % % The function performs three tests: of the multivariate skewness; the % multivariate skewness corrected for small samples; and the multivariate % kurtosis. H is a 1-by-3 array indicating the results of the hypothesis % tests: % H(i) = 0 => Do not reject the null hypothesis at significance level % ALPHA. % H(i) = 1 => Reject the null hypothesis at significance level ALPHA. % % [H STATS] = MARDIATEST(...) also returns a structure array with the % following fields: % stats.Hs - logical scalar indicating whether to reject the null % hypothesis that the multivariate skewness is consistent % with a multivariate normal distribution. % stats.Ps - the P value for the multivariate skewness. % stats.Ms - the Mardia test statistic for the multivariate skewness. % stats.CVs - the critical value for the multivariate skewness. % stats.Hsc - logical scalar indicating whether to reject the null % hypothesis that the multivariate skewness (corrected for % small samples) is consistent with a multivariate normal % distribution. % stats.Psc - the P value for the multivariate skewness (corrected for % small samples). % stats.Msc - the Mardia test statistic for the multivariate skewness % (corrected for small samples). % stats.Hk - logical scalar indicating whether to reject the null % hypothesis that the multivariate kurtosis is consistent % with a multivariate normal distribution. % stats.Pk - the P value for the multivariate kurtosis. % stats.Mk - the Mardia test statistic for the multivariate kurtosis. % stats.CVk - the critical value for the multivariate kurtosis. % % Notes: % For multivariate data, tests of normality of the individual variables % are not sufficent to determine multivariate normality. Even if every % variable in a set is normally distributed, it is still possible that % the combined distribution is not multivariate normal. Mardia's test is % one means testing for multivariate normality. The test is based on % independent tests of multivariate skewness and kurtosis. Data can be % assumed to conform to multivariate normality only if the null % hypothesis is not rejected for both tests. % % Example: % >> X = [2.4 2.1 2.4; ... % 3.5 1.8 3.9; ... % 6.7 3.6 5.9; ... % 5.3 3.3 6.1; ... % 5.2 4.1 6.4; ... % 3.2 2.7 4.0; ... % 4.5 4.9 5.7; ... % 3.9 4.7 4.7; ... % 4.0 3.6 2.9; ... % 5.7 5.5 6.2; ... % 2.4 2.9 3.2; ... % 2.7 2.6 4.1]; % % >> [H stats] = mardiatest(X, 0.05) % % H = % 0 0 1 % % stats = % Hs: 0 % Ps: 0.9660 % Ms: 3.5319 % CVs: 18.3070 % Hsc: 0 % Psc: 0.8918 % Msc: 4.9908 % Hk: 1 % Pk: 0.0452 % Mk: -1.6936 % CVk: 1.6449 % % The magnitude of the Mardia kurtosis test statistic (Mk) is greater % than critical value (CVk) for a 5% level test, so the hypothesis of % multivariate normality is rejected. % % See also JBTEST, KSTEST, KSTEST2, LILLIETEST. % % This version: % Copyright 2006 David Graham, Loughborough University % (D.J.Graham@lboro.ac.uk) % This function is based on MSKEKUR by A. Trujillo-Ortiz and R. % Hernandez-Walls. Modifications include: % - additional checking of inputs % - modification of help text for consistency with Matlab conventions % - the output of the test results to variables % - removal of the code sending test results as a string to the command % window % - removed call to 'eval'. % % Statements from the original code: % % % Created by A. Trujillo-Ortiz and R. Hernandez-Walls % % Facultad de Ciencias Marinas % % Universidad Autonoma de Baja California % % Apdo. Postal 453 % % Ensenada, Baja California % % Mexico % % atrujo@uabc.mx % % % % May 22, 2003. % % % % To cite this file, this would be an appropriate format: % % Trujillo-Ortiz, A. and R. Hernandez-Walls. (2003). Mskekur: Mardia's multivariate skewness % % and kurtosis coefficients and its hypotheses testing. A MATLAB file. [WWW document]. URL % % http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3519&objectType=FILE % % % % References: % % % % Mardia, K. V. (1970), Measures of multivariate skewnees and kurtosis with % % applications. Biometrika, 57(3):519-530. % % Mardia, K. V. (1974), Applications of some measures of multivariate skewness % % and kurtosis for testing normality and robustness studies. Sankhyâ A, % % 36:115-128 % % Stevens, J. (1992), Applied Multivariate Statistics for Social Sciences. 2nd. ed. % % New-Jersey:Lawrance Erlbaum Associates Publishers. pp. 247-248. % Check number of input arguements if (nargin < 1) || (nargin > 2) error('Requires one or two input arguments.') end % Define default ALPHA if only one input is provided if nargin == 1, alpha = 0.05; end % Check for validity of ALPHA if ~isscalar(alpha) || alpha>0.5 || alpha <0 error('Input ALPHA must be a scalar between 0 and 0.5.') end [n,p] = size(X); % Check for validity of X if p < 2 || ~isnumeric(X) error('Input X must be a numeric array with at least 2 columns.') end difT = []; for j = 1:p difT = [difT,(X(:,j) - mean(X(:,j)))]; end; S = cov(X); % Variance-covariance matrix D = difT * inv(S) * difT'; % Mahalanobis' distances matrix b1p = (sum(sum(D.^3))) / n^2; % Multivariate skewness coefficient b2p = trace(D.^2) / n; % Multivariate kurtosis coefficient k = ((p+1)*(n+1)*(n+3)) / ... (n*(((n+1)*(p+1))-6)); % Small sample correction v = (p*(p+1)*(p+2)) / 6; % Degrees of freedom g1c = (n*b1p*k) / 6; % Skewness test statistic corrected for small sample (approximates to a chi-square distribution) g1 = (n*b1p) / 6; % Skewness test statistic (approximates to a chi-square distribution) P1 = 1 - chi2cdf(g1,v); % Significance value of skewness P1c = 1 - chi2cdf(g1c,v); % Significance value of skewness corrected for small sample g2 = (b2p-(p*(p+2))) / ... (sqrt((8*p*(p+2))/n)); % Kurtosis test statistic (approximates to a unit-normal distribution) P2 = 1-normcdf(abs(g2)); % Significance value of kurtosis % Prepare outputs stats.Hs = (P1 < alpha); stats.Ps = P1; stats.Ms = g1; stats.CVs = chi2inv(1-alpha,v); stats.Hsc = (P1c < alpha); stats.Psc = P1c; stats.Msc = g1c; stats.Hk = (P2 < alpha); stats.Pk = P2; stats.Mk = g2; stats.CVk = norminv(1-alpha,0,1); H = [stats.Hs stats.Hsc stats.Hk];