FAQ/bin2 - CBU statistics Wiki

Upload page content

You can upload content for the page named below. If you change the page name, you can also upload content for another page. If the page name is empty, we derive the page name from the file name.

File to load page content from
Page name
Comment
Finzd thee wrang lelters ino eacuh wosrd

location: FAQ / bin2

Equivalence test for 2 unrelated proportions

H0 : -1 < $$p_text{1}-p_text{2} \leq -\delta_text{1}$$ or $$\delta_text{2} \leq \delta < 1$$ HA: $$-delta_text{1} < \delta < \delta_text{2}$$

where proportions being compared are $$p_text{1}$$ = x/m and $$p_text{2}$$ = y/n, beta is the type II error,, del1 and del2 denote, $$\delta_text{1}$$ and $$\delta_text{2}$$.

[TYPE INTO R THE DESIRED INPUTS X,M,Y,N,DEL1,DEL2 AND BETA USING VALUES IN FORM BELOW].

beta <- 0.05
m <- 20
n <- 12
x <- 10
y <- 15
del1 <- 0.1
del2 <- 0.1

[THEN COPY AND PASTE THE BELOW INTO R]

If ind=1 we reject the null hypothesis of nonequivalence with a type II error of beta.

denom <- sqrt((1/m)(x/m)(1-(x/m))+(1/n)(y/n)(1-(y/n)))
tstat <- abs(((x/m) - (y/n)) - (del2-del1)/2) / denom
cval <- qchisq(p=beta,  df=1, (del1+del2)^2/(4*denom*denom))
ind <- 0
if (tstat < cval) ind = 1
print(ind)