FAQ/isoR_eg - CBU statistics Wiki

Upload page content

You can upload content for the page named below. If you change the page name, you can also upload content for another page. If the page name is empty, we derive the page name from the file name.

File to load page content from
Page name
Comment
WHat wOrd is made by the captiaL lettErs?

location: FAQ / isoR_eg

Example code in R for performing isotonic regressions and Jonckheere-Terpstra test

( taken from here.)

Example data and reading into R

grp <- c(rep(0,6),rep(1,6),rep(2,6))
dat <- c(40,35,38,43,44,41,38,40,47,44,40,42,48,40,45,43,46,44)

0 40
0 35
0 38
0 43
0 44
0 41
1 38
1 40
1 47
1 44
1 40
1 42
2 48
2 40
2 45
2 43
2 46
2 44

Alternatively you can just use a single series of data

grp <- c(1:10)
dat <- c(5,9,1,2,5,6,7,8,3,8)

NUMBER IS DAT (RESPONSE) AND INFORMATION ID THE GRP (OR GROUP) IN THE BELOW SCATTERPLOT

dat <- number
grp <- as.ordered(information)

R statements
 stripchart(grp ~ dat, method = "stack")
 stripchart(information ~ number, method = "stack")

The isotonic regression can then be performed in R by running the R syntax below

dat <- number
grp <- as.ordered(information)
mu0 <- mean(dat)
sig0 <- sd(dat)
n <- length(dat)
ss.null <- sum((dat - mu0)^2)

xbar <- sapply(split(dat, grp), mean)
nbar <- sapply(split(dat, grp), length)
k <- length(xbar)

pava <- function(x, w) {
    if (any(w <= 0))
        stop("weights must be positive")
    if (length(x) != length(w))
        stop("arguments not same length")
    n <- length(x)
    design <- diag(n)
    repeat {
        out <- lm(x ~ design + 0, weights = w)
        mu <- coefficients(out)
        dmu <- diff(mu)
        if (all(dmu >= 0)) break
        j <- min(seq(along = dmu)[dmu < 0])
        design[ , j] <- design[ , j] + design[ , j + 1]
        design <- design[ , - (j + 1), drop = FALSE]
    }
    return(as.numeric(design %*% mu))
}
 
test.stat <- function(x, w) {
    mu <- pava(x, w)
    mu0 <- sum(w * x) / sum(w)
    ss.alt <- sum(w * (x - mu)^2)
    ss.null <- sum(w * (x - mu0)^2)
    return(ss.null - ss.alt)
}

print(tstat <- test.stat(xbar, nbar))
print(mu) 

nsim <- 1e3 - 1
tsim <- double(nsim)
for (i in 1:nsim) {
    xbarsim <- rnorm(k, mu0, sig0 / sqrt(nbar))
    tsim[i] <- test.stat(xbarsim, nbar)
}
phat <- mean(tsim >= tstat)
(nsim * phat + 1) / (nsim + 1)
nsim / (nsim + 1) * sqrt(phat * (1 - phat) / nsim)
cat("Calculation took", proc.time()[1], "seconds\n")

and the Jonckheere-Terpstra test can be performed using the R code below

dat <- number
grp <- as.ordered(information)

jkstat <- function(x, g) {
    foo <- (sign(outer(x, x, "-")) + 1) / 2
    sum(foo[g[row(foo)] > g[col(foo)]])
}
 
print(jstat <- jkstat(dat, grp))

The results agree for this data set with ISOREG which was brought int to do isotonic regression after the R code in the other files was written. There are breaks at N=5 and N=9 giving

print(mu)
[1] 4.25 4.25 4.25 4.25 5.00 6.00 6.00 6.00 6.00 8.00

The main lesson here is that the normal theory test (isotonic regression) does more or less the same as the nonparametric Jonckheere-Terpstra test. This is no surprise since the data are fairly normal looking.