FAQ/mlr - CBU statistics Wiki

Upload page content

You can upload content for the page named below. If you change the page name, you can also upload content for another page. If the page name is empty, we derive the page name from the file name.

File to load page content from
Page name
Comment
Type the missing letters from: He's no ded, he's jus resing hs eys

location: FAQ / mlr

Multigroup logistic regression

Multinomial (or multigroup) logistic regression is a generalization of binary logistic regression applied to finding which variables best discriminate between three or more groups. It is available in most statistics software including SPSS.

The procedure produces regression estimates of form a(j) + b(kj) for the j-th group where a(j) is a constant term related to the relative sizes of the groups and b(kj) is the k-th predictor coefficient. As in ordinary (linear) regression a group predictor with s levels will be decomposed into s-1 dummy variables. For one of the groups, R, a(R) = b(kR) = 0 since group R is used as a reference group. R is usually taken to be the first or the last category.

These regression estimates are then used to compute a score in each group for each individual of form a(j) + b(j)xi where xi is the score for individual, I in group j. The score for all individuals in group R is zero.

The individual is then classified into the group for which they have the highest score.

Reference

Garson GD (2014) Logistic regression: binary and multinomial. Statistical Associates Publishers:Asheboro, NC. This illustrated tutorial introduces multinomial logistic regression. Contains SPSS (and SAS) examples. This is a major revision of the 2012 and 2013 texts. The attachment consists of the first 25 pages of text only.