FAQ/combinatorics/Rreps - CBU statistics Wiki

Upload page content

You can upload content for the page named below. If you change the page name, you can also upload content for another page. If the page name is empty, we derive the page name from the file name.

File to load page content from
Page name
Comment
In thi sntence, what word is mad fro the mising letters?

location: FAQ / combinatorics / Rreps

R code computing the replication probabilities for the example of 92 stimuli randomly drawn with replacement into sequences of length 6

#
# From Daniel Molinari July 2015
#

# S.x.y = y+1 instances of x replicates
# 0 replicates   abcdef

  S.0 <- choose(92,6)*factorial(6)


# 1-0 replicates aabcde

  S.1.0 <- choose(6,2)*92*91*90*89*88 +
           choose(6,2)*choose(4,2)*92*91*90*89 +
           choose(6,2)*choose(4,2)*choose(2,2)*92*91*90  

# 1.1 PW addition using Laurence S formula aabbcd 

 S.1.1 <- choose(92,2)*choose(90, 2)*15*6*2 


# 1-2 replicates aabbbc
  
  S.1.2 <- choose(6,2)*choose(4,3)*92*91*90


# 1-3 replicates aabbbb
  
  S.1.3 <- choose(6,2)*choose(4,4)*92*91 


# 2-0 replicates aaabcd
  
  S.2.0 <- choose(6,3)*92*91*90 

# PW ADDING IN LAURENCE S FORMULA 2-1 replicates aaabbb

  S.2.1 <- factorial(2)*choose(92,2)*choose(6,3)/92^6 

# 2-2 replicates aaabbb
  
  S.2.2 <- choose(6,3)*choose(3,3)*92*91 


# 3-0 replicates aaaabc
  
  S.3.0 <- choose(6,4)*92*91*90

# PW addition 
# Yes, the order counts.  The correct computation is 
# Sequences( 3 instances 1 replicate) =  3 ! (92 Choose 3)*(6 choose 2)*(4 choose 2)   

  S.3.1 <-  factorial(3)*choose(92,3)*choose(6,2)*choose(4,2)   


# 4-0 replicates aaaaab
  
  S.4.0 <- choose(6,5)*92*91 


# 5-0 replicates aaaaaa
  
  S.5.0 <- choose(6,6)*92  


# Compute cumulative probability

  S <- S.0 + 
       S.1.0 + S.1.2 + S.1.3 +
       S.2.0 + S.2.2 +
       S.3.0 +
       S.4.0 +
       S.5.0

   P  <- S / (92^6)

  S <- S.0 + 
       S.1.0 + S.1.1 + S.1.2 + S.1.3 +
       S.2.0 + S.2.1 + S.2.2 +
       S.3.0 + S.3.1
       S.4.0 +
       S.5.0

   P1 <- S / (92^6)

yields

  P    # 1.002883
  P1   # 1.007972